
Efficient Route Planning
SS 2012

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 11, Wednesday July 18th, 2012
(Transfer Patterns, Course Evaluation)

Overview of this lecture

 Organizational
– Your results from Ex. Sheet #10 (Multi-Criteria Costs)

– This is the next to last lecture  Course Evaluation

– Reminder: exam date is Monday, August 20, 2:00pm

 Transfer Patterns Routing
– An algorithm that works well on transit networks

– That's also the algorithm at work behind Google Maps

 Exercise sheet … the last one!
– Fill out the Evaluation Sheet for this course  20 points

– Compute #transfer patterns for a subset of all station pairs

2

Feedback from ES#10 (Multi-Criteria)

 Summary / excerpts last checked July 18, 14:54

– Nice and relaxing exercise

– Good for understanding the concept of Pareto sets in detail

– Good to have a mandatory proof

– First time it was indeed just a few lines of code

3

Official Course Evaluation

 Please submit until the end of this week

– Because I would like to discuss the feedback together
with you in the next (=last) lecture

– You get 20 points for this ... with which you can
replace the points from your worst exercise sheet

– Just write in your feedback-exercise-sheet-11.txt that
you submitted the form (provided you did)

– Please take your time to fill out the form

– The free text comments are of particular interest to us

– Don't forget to comment on the tutors as well

– Please by honest and concrete

4

Transfer Patterns 1/4

 An algorithm designed for transit networks

– Trying to exploit what is special about transit networks

– But what could this be? So far we have only seen things
which are harder on transit networks than on road networks

– Here is one thing special about transit networks:

transfers

– Even when you take a very long trip, the number of
transfers is almost always a very small number

– More than that, for a given source and destination, there is
only a small number of "patterns" of where you transfer

5

Transfer Patterns 2/4

6

Transfer Patterns 3/4

 The basic idea on one slide

– The transfer pattern of a path = the sequence of stations
on the path where one transfers, including start and end

– Idea: for each pair of stations, precompute all transfer
patterns of all optimal paths (at all times) and store them

– Then, at query time, do a time-dependent Dijkstra computation
on this so-called query graph, where each arc evaluation is
again a shortest path query, but restricted to no transfers

– Such direct-connection queries are easy to compute fast

7

Transfer Patterns 4/4

8

 A more complex example

Components of a Transfer Pattern Router

 Transfer patterns precomputation
– Compute (parts of) all transfer patterns of all optimal paths

 Direct-connection tables precomputation
– Compute data structure for fast direct connection queries

 Query Graph Construction
– Build the query graph of all transfer patterns between A and B

 Query Graph Evaluation
– Dijkstra search on query graph, with arcs = direct connections

 Various Refinements / Optimizations
– For example: filter out rare transfer patterns, …

9

Direct-Connection Queries

 One table per "line", let us call this one L17
Stations: S154 S97 S987 S111 …

Time from start: 0min 7min 12min 21min …

Start times: 8:15 9:15 10:15 11:20 12:20 …

 Lines per station (with positions in the respective line table)

Station S97: (L8, 4) (L17, 2) (L34, 5) (L87, 17) …

Station S111: (L9, 1) (L13, 5) (L17, 4) (L55, 16) …

 Example query from S97 @ 10:20 to S111
– Intersect the lists of the two stations : (L17, 2  4) …

– Find time from start to S97 and to S111 : 7min and 21min

– Find first start time after 10:20 – 7min : 10:15  depart 10:22

– Compute arrival time at S111 : 10:15 + 21min  arrive 10:36

10

Transfer patterns precomputation 1/4

 Can be done via a Set-Dijkstra search

– For each station A, do a Dijkstra starting from all nodes at
that station (all with cost = travel time zero)

– For each other node u in the graph, this will give us the
path from the latest node at A so that u can still be reached

11

Transfer patterns precomputation 2/4

 Now we have all optimal paths at all times

– To obtain the transfer patterns for a station pair (A, B),
simply trace back, in the Dijkstra search from A, the paths
from all nodes in B and keep track of the transfers

12

Transfer patterns precomputation 3/4

 Beware of non-optimal paths to arrival nodes

– Note that there are no arcs between the arrival nodes at
the target station

– They would harm the Dijkstra search (because they would
allow us to switch between lines when we shouldn't)

– But after the Dijkstra search is done, we need them to
discard non-optimal paths

13

Transfer patterns precomputation 4/4

 Arrival-loop algorithm for a target station B

– Order the arrival nodes by time t1 ≤ t2 ≤ t3 ≤ ... and call
the corresponding arrival nodes a1, a2, a3, ...

– Do the following in the order of increasing time

– Let Ti-1 and Ti be the travel time of the shortest path to
ai-1 and ai, respectively

– If Ti' := Ti-1 + (ti – ti-1) ≤ Ti, replace the travel time at ai
by Ti' and make ai-1 the predecessor on the SP to ai

14

Important Stations 1/3

 The pre-computation so far is quadratic

– Full Dijkstra to the whole graph for every station

– Let m = #stations and n = #nodes

– This amounts to a total of ~ m · n · L Dijkstra iterations

where L is the average number of labels per node

– A multi-label Dijkstra is ≈ 10 times slower per iteration
than an ordinary Dijkstra (due to label set maintenance)

– Example 1: m = 10K, n = 1M, L = 3, 10 µs / Dijkstra iter.

30K seconds ≈ 80 hours

– Example 2: m = 1M, n = 1G, L = 3, 10 µs / Dijkstra iter.

3G seconds ≈ 8 million hours ≈ 1000 years

15

Important Stations 2/3

 How to improve on this?
– Idea: Select 1% of all stations as “important”

– Heuristic: where many paths transfer + geographic diversity

– For each important station compute a global Dijkstra as before

– For each non-important station, compute a local Dijkstra, that
is, compute all local paths = all paths until an important
station or without any important station on them

16

Important Stations 3/3

 Local Dijkstra search from a station s ... problem:
– The number of (nodes on the) local paths is indeed small

– But we have the usual "15 hours to the next village problem":

If only one of the local paths has a large cost, say 15 hours,
then the Dijkstra computation needs to search everything
that can be reached from s within 15 hours

– Unfortunately, almost every station has at least one local path
of high cost, and hence our local Dijkstra searches end up
being no less expensive than the global Dijkstra searches

– Simple heuristic remedy: only consider local paths up to two
transfers, that is, paths where more than two transfers are
needed to get to an important station will be lost

– Experience shows that these are very rare in practice

17

Query graph construction (sketch)

 For given source and target location A and B
– Compute the sets N(A) and N(B) of stations near A and B

– Get the precomp. local transfer patterns of these stations

– Get the set I(A) of important stations, where the local paths
from N(A) end

– Get the global transfer patterns for each pair of stations
(a, b) where a ϵ I(A) and b ϵ N(B)

– Assemble this to form the query graph of all transfer
patterns relevant for this query

18

Query graph search

 Time-dependent Dijkstra search

– Start at the source location

– For arcs from the source location to nearby station
launch road network query (or have these precomputed)

Same for arcs to the target location

– For arcs between stations, ask direct-connection table

19

Implementation Advice 1/4

 Set Dijkstra

– Just add an additional member sourceNodeSet

– If non-empty, then in DijkstrasAlgorithm::computeShortestPath
put all nodes from sourceNodeSet in the PQ with cost 0

– And simply ignore the source node argument

 Arrival loop computation

– For a given station, sort the nodes of that station by time

– Then a single scan over the sorted sequence is enough

20

Implementation Advice 2/4

 Computing the transfer pattern of a path

– A transfer happens at a transfer node

– However, at a transfer the path may contain a whole
sequence of transfer nodes, due to waiting

– Make sure that you only count this as once transfer

– Don't forget that the source station is always the first
station of a transfer pattern

... and the target station is always the last one

21

Implementation Advice 3/4

 Storing the transfer patterns for a station pair

– For a (set) Dijkstra from a given source station, each node
gives exactly one transfer patterns

Note: for single-criteria, we have one label per node

– A transfer pattern can be stored as an Array<int>

that is, the sequence of station ids

– No need to store the transfer patterns of all paths

– Enough to remember which transfer patters occur at all

– For a given source-target station pair, hence maintain the
set of distinct transfer patterns in a Set<Array<int>>

22

Implementation Advice 4/4

 Parsing Hawaii instead of Manhattan

– You find the GTFS data for Hawaii on the Wiki

– We checked that for Hawaii 80% of a set of random
queries has a solution

– Recall: for Manhattan it was 20% because of several
station ids for bascially the same station

– Beware: column order is not fixed in the GTFS standard,
and different for Hawaii than for Manhattan

– So your parser should consider the column headers,
and not rely on a fixed position of the columns you need

– You find an easy fix for this in the SVN, lectures/lecture-11

23

References

 Transfer Patterns
Fast Routing in Very Large Transportation Networks
using Transfer Patterns
Bast, Carlsson, Eigenwillig, Geisberger, Harrelson,
Rachyev, Viger ESA 2010
http://www.springerlink.com/content/c873271685124v42/

24

25

