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Overview of this lecture

 Organizational
– Your results from Ex. Sheet #10 (Multi-Criteria Costs)

– This is the next to last lecture  Course Evaluation

– Reminder: exam date is   Monday, August 20, 2:00pm

 Transfer Patterns Routing
– An algorithm that works well on transit networks

– That's also the algorithm at work behind Google Maps

 Exercise sheet … the last one!
– Fill out the Evaluation Sheet for this course  20 points

– Compute #transfer patterns for a subset of all station pairs
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Feedback from ES#10 (Multi-Criteria)

 Summary / excerpts            last checked July 18, 14:54

– Nice and relaxing exercise

– Good for understanding the concept of Pareto sets in detail

– Good to have a mandatory proof

– First time it was indeed just a few lines of code
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Official Course Evaluation

 Please submit until the end of this week

– Because I would like to discuss the feedback together 
with you in the next (=last) lecture

– You get 20 points for this ... with which you can 
replace the points from your worst exercise sheet

– Just write in your feedback-exercise-sheet-11.txt that 
you submitted the form (provided you did)

– Please take your time to fill out the form

– The free text comments are of particular interest to us

– Don't forget to comment on the tutors as well

– Please by honest and concrete
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Transfer Patterns   1/4

 An algorithm designed for transit networks

– Trying to exploit what is special about transit networks

– But what could this be? So far we have only seen things 
which are harder on transit networks than on road networks

– Here is one thing special about transit networks:

transfers

– Even when you take a very long trip, the number of 
transfers is almost always a very small number

– More than that, for a given source and destination, there is 
only a small number of "patterns" of where you transfer
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Transfer Patterns   2/4
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Transfer Patterns   3/4

 The basic idea on one slide

– The transfer pattern of a path = the sequence of stations
on the path where one transfers, including start and end

– Idea: for each pair of stations, precompute all transfer
patterns of all optimal paths (at all times) and store them

– Then, at query time, do a time-dependent Dijkstra computation 
on this so-called query graph, where each arc evaluation is 
again a shortest path query, but restricted to no transfers

– Such direct-connection queries are easy to compute fast
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Transfer Patterns   4/4
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 A more complex example



Components of a Transfer Pattern Router

 Transfer patterns precomputation
– Compute (parts of) all transfer patterns of all optimal paths

 Direct-connection tables precomputation
– Compute data structure for fast direct connection queries

 Query Graph Construction
– Build the query graph of all transfer patterns between A and B

 Query Graph Evaluation
– Dijkstra search on query graph, with arcs = direct connections

 Various Refinements / Optimizations
– For example: filter out rare transfer patterns, …
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Direct-Connection Queries

 One table per "line", let us call this one L17
Stations:               S154      S97    S987     S111    …

Time from start:    0min    7min    12min   21min  …

Start times:           8:15   9:15   10:15   11:20   12:20  …

 Lines per station     (with positions in the respective line table)

Station S97:   (L8, 4)  (L17, 2)  (L34, 5)  (L87, 17) …

Station S111:   (L9, 1)  (L13, 5)  (L17, 4)  (L55, 16)  … 

 Example query from  S97 @ 10:20 to  S111
– Intersect the lists of the two stations :  (L17, 2  4) …

– Find time from start to S97 and to S111 : 7min and 21min

– Find first start time after 10:20 – 7min :   10:15     depart  10:22

– Compute arrival time at S111 : 10:15 + 21min      arrive   10:36
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Transfer patterns precomputation  1/4

 Can be done via a Set-Dijkstra search

– For each station A, do a Dijkstra starting from all nodes at 
that station (all with cost = travel time zero)

– For each other node u in the graph, this will give us the 
path from the latest node at A so that u can still be reached
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Transfer patterns precomputation  2/4

 Now we have all optimal paths at all times

– To obtain the transfer patterns for a station pair (A, B), 
simply trace back, in the Dijkstra search from A, the paths 
from all nodes in B and keep track of the transfers
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Transfer patterns precomputation  3/4

 Beware of non-optimal paths to arrival nodes

– Note that there are no arcs between the arrival nodes at 
the target station

– They would harm the Dijkstra search (because they would 
allow us to switch between lines when we shouldn't)

– But after the Dijkstra search is done, we need them to 
discard non-optimal paths

13



Transfer patterns precomputation  4/4

 Arrival-loop algorithm for a target station B

– Order the arrival nodes by time t1 ≤ t2 ≤ t3 ≤ ... and call 
the corresponding arrival nodes a1, a2, a3, ...

– Do the following in the order of increasing time

– Let Ti-1 and Ti be the travel time of the shortest path to 
ai-1 and ai, respectively

– If Ti' := Ti-1 + (ti – ti-1) ≤ Ti, replace the travel time at ai
by Ti' and make ai-1 the predecessor on the SP to ai
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Important Stations   1/3

 The pre-computation so far is quadratic

– Full Dijkstra to the whole graph for every station

– Let m = #stations and n = #nodes

– This amounts to a total of ~ m · n · L Dijkstra iterations

where L is the average number of labels per node

– A multi-label Dijkstra is ≈ 10 times slower per iteration 
than an ordinary Dijkstra (due to label set maintenance)

– Example 1:  m = 10K, n = 1M, L = 3, 10 µs / Dijkstra iter.

30K seconds ≈ 80 hours

– Example 2:  m = 1M, n = 1G, L = 3, 10 µs / Dijkstra iter.

3G seconds ≈ 8 million hours ≈ 1000 years
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Important Stations   2/3

 How to improve on this?
– Idea: Select 1% of all stations as “important”

– Heuristic:  where many paths transfer + geographic diversity

– For each important station compute a global Dijkstra as before

– For each non-important station, compute a  local Dijkstra, that 
is, compute all local paths = all paths until an important 
station or without any important station on them
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Important Stations   3/3

 Local Dijkstra search from a station s ... problem:
– The number of (nodes on the) local paths is indeed small

– But we have the usual "15 hours to the next village problem":

If only one of the local paths has a large cost, say 15 hours,
then the Dijkstra computation needs to search everything
that can be reached from s within 15 hours

– Unfortunately, almost every station has at least one local path 
of high cost, and hence our local Dijkstra searches end up 
being no less expensive than the global Dijkstra searches

– Simple heuristic remedy: only consider local paths up to two 
transfers, that is, paths where more than two transfers are 
needed to get to an important station will be lost

– Experience shows that these are very rare in practice
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Query graph construction (sketch) 

 For given source and target location A and B
– Compute the sets N(A) and N(B) of stations near A and B

– Get the precomp. local transfer patterns of these stations

– Get the set I(A) of important stations, where the local paths 
from N(A) end

– Get the global transfer patterns for each pair of stations
(a, b) where a ϵ I(A) and b ϵ N(B)

– Assemble this to form the query graph of all transfer 
patterns relevant for this query
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Query graph search

 Time-dependent Dijkstra search

– Start at the source location

– For arcs from the source location to nearby station 
launch road network query (or have these precomputed)

Same for arcs to the target location

– For arcs between stations, ask direct-connection table
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Implementation Advice   1/4

 Set Dijkstra

– Just add an additional member sourceNodeSet

– If non-empty, then in DijkstrasAlgorithm::computeShortestPath 
put all nodes from sourceNodeSet in the PQ with cost 0

– And simply ignore the source node argument

 Arrival loop computation

– For a given station, sort the nodes of that station by time

– Then a single scan over the sorted sequence is enough
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Implementation Advice   2/4

 Computing the transfer pattern of a path

– A transfer happens at a transfer node

– However, at a transfer the path may contain a whole
sequence of transfer nodes, due to waiting

– Make sure that you only count this as once transfer

– Don't forget that the source station is always the first
station of a transfer pattern

... and the target station is always the last one
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Implementation Advice   3/4

 Storing the transfer patterns for a station pair

– For a (set) Dijkstra from a given source station, each node 
gives exactly one transfer patterns

Note: for single-criteria, we have one label per node

– A transfer pattern can be stored as an Array<int>

that is, the sequence of station ids

– No need to store the transfer patterns of all paths

– Enough to remember which transfer patters occur at all

– For a given source-target station pair, hence maintain the 
set of distinct transfer patterns in a Set<Array<int>>
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Implementation Advice   4/4

 Parsing Hawaii instead of Manhattan

– You find the GTFS data for Hawaii on the Wiki

– We checked that for Hawaii 80% of a set of random
queries has a solution

– Recall: for Manhattan it was 20% because of several
station ids for bascially the same station

– Beware: column order is not fixed in the GTFS standard, 
and different for Hawaii than for Manhattan

– So your parser should consider the column headers,
and not rely on a fixed position of the columns you need

– You find an easy fix for this in the SVN, lectures/lecture-11
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