
Efficient Route Planning
SS 2012

Lecture 3, Wednesday May 9th, 2012
(A* L d k S t Dijk t)(A*, Landmarks, Set Dijkstra)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational
– Feedback and results from Exercise Sheet 2

– Public SVN snapshot of code from past exercises

 A* algorithm
– A* = Dijkstra with a heuristic for goal direction

– Heuristic 1: straight line distance

– Heuristic 2: landmarks

 Exercise Sheet 3
– Implement A* + run some queries for both heuristics

– Some optional theoretical tasks (useful for exam preparation)

2

Your Feedback on Exercise Sheet 2

 Summary / excerpts last checked May 9, 15:57

– Less work than last sheet, but still more than expected

– 6 – 8 hours for most, but a few needed much longer

– How to debug ... watch corresponding C++ lecture

– Some spent quite some time on refactoring code from ES 1

– Reduction to LCC was trickier than expected (node remapping)

– "Not the first time I heard about Dijkstra"

– Implementation advice from the lecture was useful again

– Thanks a lot for the detailed advice from the tutor!

– Result table is interesting + good correctness check

– Problem with ant on Jenkins ... but fixed now

hi d d l di i ld b i– Machine to test code under equal conditions would be nice

3

Experimental results from Ex. Sheet 2p

 See the table on the Wiki

– #arcs in LCC is ≈ 99% of #arcs in original graph

– #nodes is only ≈ 20% ... reason: non-highway nodes#nodes is only 20% ... reason: non highway nodes

– Average query time is ≈ 1s for 1 million settled nodes

at least in C++ much slower in some Java implementat least in C++, much slower in some Java implement.

– On the avrg, ≈ 50% of all nodes settled per query ... a lot!

Average SP cost ≈ 1 5 hours on BaWü makes sense!– Average SP cost ≈ 1.5 hours on BaWü ... makes sense!

note that a random node does not give a random point
on the map (many more nodes in city areas)on the map (many more nodes in city areas)

4

SVN snapshotp

 SVN snapshot of code from past Exercise Sheets

– After the deadline of an Exercise Sheet is over:

we will copy all code files from all user to a publicwe will copy all code files from all user to a public
subfolder snaphost of the course SVN ... see Wiki

– That way you cany y

... get inspiration from the code of others

... continue even if you missed a previous Ex. Sheet... continue even if you missed a previous Ex. Sheet

– Feel free to ask if something is unclear in the code

For that purpose please make sure that your codeFor that purpose, please make sure that your code
contains a copyright notice + email address

5

A* algorithmg

 A* is a simple variant of Dijkstra's algorithm

– Additionally: for each node u, a value h[u] that
estimates dist(u, t), where t is the target

h is often called the heuristic function of A*

– Difference to Dijkstra: value of a node u in the priority j p y
queue is not dist[u] but dist[u] + h[u]

therefore, if h[u] = 0 for all u, then A* = Dijkstra

– Works if h is admissable and monotone ... later slide

– Best results when h[u] = dist(u, t) for all u

then A* settles only the nodes on a shortest path

6

A* algorithm — Exampleg p

7

A* algorithm — Conditions on hg

 The heuristic h must be admissable

– For each node u it must hold: h(u) ≤ dist(u, t)

– Informally: the heuristic must never overestimateInformally: the heuristic must never overestimate

 The heuristic h must be monotone

F h () it t h ld h() ≤ t() h()– For each arc (u,v) it must hold: h(u) ≤ cost(u,v) + h(v)

– Informally: heuristic must obey the triangle inequality

– Counterexample that shows why this is meaningful:

8

A* algorithm — Correctness proof 1/2g p

 Variant of the correctness proof for Dijkstra

– Similarly as for Dijkstra, we make the simplifying
assumption that the dist(s, u) + h(u) are all different

– Then we can order the nodes u1, u2, u3, ... such that

dist(s, u1) + h(u1) < dist(s, u2) + h(u2) < (, 1) (1) (, 2) (2)

– Just as for Dijkstra we now prove by induction over i:

In round i, node ui is settled and dist[ui] = dist(s, ui)In round i, node ui is settled and dist[ui] dist(s, ui)

– Since we have already seen the proof for Dijkstra, we give
this proof in condensed form ... verify for yourself!

9

A* algorithm — Correctness proof 2/2g p

 Case i = 1

– In round 1, dist[u1] = 0 = dist(s, s) = dist(s, u1)

 Case i > 1: induction step from < i to i Case i > 1: induction step from < i to i

– Let v be the direct predecessor of ui on SP from s to ui

Th di t() h() ≤ di t() () h()– Then dist(s,v) + h(v) ≤ dist(s,v) + c(v,ui) + h(ui) =

dist(s,ui) + h(ui) ... hence v = uj for some j < i

– After v was settled and arc (v,ui) relaxed in round j < i:

dist[ui] ≤ dist[v] + c(v,ui) = dist(s,v) + c(v,ui) = dist(s,ui)

– For j > i, dist[uj] + h(uj) ≥ dist(s,uj) + h(uj) > dist(s,ui) + h(ui)

– Hence ui is settled in round i with dist[ui] = dist(s,ui)

10

A* algorithm — Two heuristicsg

 Straight-line distance (also: as-the-crow-flies distance)

– Take h(u) = eucl(u, t) / vmax

where eucl(u,t) is the Euclidean distance from u to twhere eucl(u,t) is the Euclidean distance from u to t

and vmax is the maximum speed

– Admissible and monotone because of triangle inequality– Admissible and monotone because of triangle inequality

– Optional theoretical exercise: verify this!

L d k h i ti Landmark heuristic

– Informally: for every node u, precompute distances to a set
f l t d d ll d l d kof pre-selected nodes, called landmarks

– How to obtain a heuristic function from that ... next slides

11

A* with landmarks 1/4

 Basic idea (first explained for directed graphs)

– Consider an arbitrary node ℓ and call it a landmark

– Our SP distance function dist satisfies the triangle inequality:Our SP distance function dist satisfies the triangle inequality:

dist(u, v) ≤ dist(u, w) + dist(w, v) for all nodes u, v, w

– Then in particular for all landmarks ℓ and all nodes u v– Then, in particular, for all landmarks ℓ and all nodes u, v

dist(u,ℓ) ≤ dist(u,v)+dist(v,ℓ)  dist(u,ℓ)–dist(v,ℓ) ≤ dist(u,v)

dist(ℓ v) ≤ dist(ℓ u)+dist(u v)  dist(ℓ v) dist(ℓ u) ≤ dist(u v)dist(ℓ,v) ≤ dist(ℓ,u)+dist(u,v)  dist(ℓ,v)–dist(ℓ,u) ≤ dist(u,v)

– Hence, for a landmark ℓ, a target node t, and any node u

h() (d () d () d () d ()) d ()h(u) := max(dist(u,ℓ)–dist(t,ℓ) , dist(ℓ,t)–dist(ℓ,u)) ≤ dist(u,t)

– For undirected graphs, dist(x,y) = dist(y,x) for all x,y and thus:

h(u) := |dist(ℓ,u)–dist(ℓ,t)| ≤ dist(u,t)

12

A* with landmarks 2/4

 When is this a good lower bound?

– When one of these two inequalities is "close" to equality

dist(u,ℓ) ≤ dist(u,t)+dist(t,ℓ) or dist(ℓ,t) ≤ dist(ℓ,u)+dist(u,t)dist(u,ℓ) ≤ dist(u,t)+dist(t,ℓ) or dist(ℓ,t) ≤ dist(ℓ,u)+dist(u,t)

– For the first inequality, this happens when t lies "close" to
the shortest path from u to ℓ ... landmark "behind" targetp g

– For the second inequality, this happens when u lies "close" to
the shortest path from ℓ to t ... landmark "before" u

– Intuitively, landmark must be close to line through u and t

– There is no ℓ which achieves this for all u and t

13

A* with landmarks 3/4

 Pick a set L of landmarks

– For each ℓ ϵ L we have

max(dist(u,ℓ)–dist(t,ℓ) , dist(ℓ,t)–dist(ℓ,u)) ≤ dist(u,t)max(dist(u,ℓ) dist(t,ℓ) , dist(ℓ,t) dist(ℓ,u)) ≤ dist(u,t)

– Hence also

maxℓ ϵ L{max(dist(u,ℓ)–dist(t,ℓ) , dist(ℓ,t)–dist(ℓ,u))} ≤ dist(u,t)maxℓ ϵ L{max(dist(u,ℓ) dist(t,ℓ) , dist(ℓ,t) dist(ℓ,u))} ≤ dist(u,t)

– When is the left hand side a good lower bound?

Obviously the more landmarks the betterObviously, the more landmarks the better

But for each landmark ℓ, we need to precompute and store
dist(u, ℓ) and dist(ℓ, u) for all nodes udist(u, ℓ) and dist(ℓ, u) for all nodes u

Also, computing the lower bound at query time is ~ |L|

For a fixed number of landmarks the more "distributed"For a fixed number of landmarks, the more distributed
over the graph they are the better

14

A* with landmarks 4/4

 Precomputation of landmark distances

– We need dist(u, ℓ) and dist(ℓ, u) for all ℓ and u

– Important: no need to do a Dijkstra for each u !Important: no need to do a Dijkstra for each u !

– A single Dijkstra from ℓ gives us dist(ℓ, u) for all u

– Similarly a single Dijkstra on the graph with all arcs– Similarly, a single Dijkstra on the graph with all arcs
reversed gives us dist(u, ℓ) for all u

– For our graphs, dist(u, ℓ) = dist(ℓ, u) and the reversedFor our graphs, dist(u, ℓ) dist(ℓ, u) and the reversed
graph is the same, and so a single Dijkstra per ℓ suffices

Heuristic is then h(u) = maxℓ ϵ L |dist(ℓ, u) – dist(ℓ, t)| ℓ ϵ L

15

Monotonicity of landmark heuristicy

 Let (u,v) be an arbitrary arc with cost c(u, v)

– We have to show that h(u) ≤ c(u,v) + h(v), where

h(u) = maxℓ ϵ L{max(dist(u,ℓ)–dist(t,ℓ) , dist(ℓ,t)–dist(ℓ,u))}h(u) maxℓ ϵ L{max(dist(u,ℓ) dist(t,ℓ) , dist(ℓ,t) dist(ℓ,u))}

– For a fixed ℓ ϵ L: dist(u,ℓ) ≤ c(u,v)+dist(v,ℓ) "triangle inequality"

 dist(u ℓ) – dist(t ℓ) ≤ c(u v) + dist(v ℓ) – dist(t ℓ) (1) dist(u,ℓ) – dist(t,ℓ) ≤ c(u,v) + dist(v,ℓ) – dist(t,ℓ) (1)

– Similarly: dist(ℓ,v) ≤ dist(ℓ,u) + c(u,v)

 dist(ℓ t) dist(ℓ u) ≤ c(u v) + dist(ℓ t) dist(ℓ v) (2) dist(ℓ,t) – dist(ℓ,u) ≤ c(u,v) + dist(ℓ,t) – dist(ℓ,v) (2)

– Max of (1) and (2) gives us h(u) ≤ c(u,v) + h(v) for a single ℓ

f h d b h d d– If we then do maxℓ ϵ L on both sides, we are done

– Lemma: if xi ≤ yi for all i ϵ I  maxiϵI xi ≤ maxiϵI yi

16

Landmark selection

 We look at two heuristics

– Random selection

Not bad, but suboptimal distributionNot bad, but suboptimal distribution

– Greedy farthest node selection

Start with a random node then iteratively add moreStart with a random node, then iteratively add more

In each iteration, pick the node u which maximizes

min dist(ℓ u) where L' nodes already selectedminℓ ϵ L' dist(ℓ, u), where L' = nodes already selected

intuitively: u is "farthest" from all nodes in L'

h d () f 'How to compute u with minℓ ϵ L' dist(ℓ, u) for given L' ?

17

Dijkstra from a set of nodesj

 Implementation

– Initially put all nodes from the set S in the priority queue,
with distance 0, then run ordinary Dijkstra

– Then the distance computed for each node u will be

mins ϵS dist(s, u) ... which we write as dist(S, u)s ϵS (,) (,)

– It's not obvious that this is true, so we should prove it

This is one of the optional exercises on Ex. Sheet 3This is one of the optional exercises on Ex. Sheet 3

Good thing to do when you prepare for the exam

18

A* — Implementation advicep

 No need to implement a new class

– You can easily extend your class DijsktrasAlgorithm

– Just add a member variable Array<int> heuristic ... see WikiJust add a member variable Array<int> heuristic ... see Wiki

 Landmark precomputation

I t t d 't t Dij kt f h d– Important: don't execute one Dijsktra for each node

– For undirected graphs, one Dijkstra per landmark suffices

for each ℓ, this gives you dist(ℓ, u) for all u

heuristic is h(u) = maxℓ ϵ L{|dist(ℓ, u) – dist(ℓ, t)|}

– Note that the heuristic h must be computed per query

for simplicity, for a given query, first compute h(u) for
all nodes u ... see design suggestion linked from Wiki

19

References

 The original "A* with landmarks" paper
Computing the shortest path: A* search meets graph theory
A. Goldberg and C. Harrelson, SODA 2005
http://portal acm org/citation cfm?doid 1070432 1070455http://portal.acm.org/citation.cfm?doid=1070432.1070455
http://www.avglab.com/andrew/pub/soda05.pdf

20

21

