Efficient Route Planning
SS 2012

Lecture 3, Wednesday May 9th, 2012
(A*, Landmarks, Set Dijkstra)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of this lecture

m Organizational
— Feedback and results from Exercise Sheet 2
— Public SVN snapshot of code from past exercises
m A* algorithm
— A* = Dijkstra with a heuristic for goal direction
— Heuristic 1: straight line distance
— Heuristic 2: landmarks

m Exercise Sheet 3
— Implement A* + run some queries for both heuristics
— Some optional theoretical tasks (useful for exam preparation)

Your Feedback on Exercise Sheet 2

m Summary / excerpts last checked May 9, 15:57
— Less work than last sheet, but still more than expected
— 6 — 8 hours for most, but a few needed much longer
— How to debug ... watch corresponding C++ lecture
— Some spent quite some time on refactoring code from ES 1
— Reduction to LCC was trickier than expected (node remapping)
— "Not the first time I heard about Dijkstra"
— Implementation advice from the lecture was useful again
— Thanks a lot for the detailed advice from the tutor!
— Result table is interesting + good correctness check
— Problem with ant on Jenkins ... but fixed now
— Machine to test code under equal conditions would be nice

Experimental results from Ex. Sheet 2

m See the table on the Wiki

— #arcs in LCC is = 99% of #arcs in original graph
— #nodes is only = 20% ... reason: non-highway nodes
— Average query time is = 1s for 1 million settled nodes

at least in C++, much slower in some Java implement.
— On the avrg, = 50% of all nodes settled per query ... a lot!
— Average SP cost = 1.5 hours on BaWu ... makes sensel

» Nhote that a random node does not give a random point
on the map (many more nodes in city areas)

SVN snapshot

m SVN snapshot of code from past Exercise Sheets

— After the deadline of an Exercise Sheet is over:

we will copy all code files from all user to a public
subfolder snaphost of the course SVN ... see Wiki

— That way you can
... get inspiration from the code of others
... continue even if you missed a previous Ex. Sheet

— Feel free to ask if something is unclear in the code

For that purpose, please make sure that your code
contains a copyright notice + email address

A* algorithm

m A* is a simple variant of Dijkstra's algorithm

— Additionally: for each node u, a value h[u] that
estimates dist(u, t), where t is the target

» h is often called the heuristic function of A*

— Difference to Dijkstra: value of a node u in the priority
queue is not dist[u] but dist[u] + h[u]

therefore, if h[u] = 0 for all u, then A* = Dijkstra
— Works if h is admissable and monotone ... later slide
— Best results when h[u] = dist(u, t) for all u

» then A* settles only the nodes on a shortest path

BURG

A* algorithm — Example

Q_Z

A* algorithm — Conditions on h

m The heuristic h must be admissable
— For each node u it must hold: h(u) < dist(u, t)
— Informally: the heuristic must never overestimate
m The heuristic h must be monotone
— For each arc (u,v) it must hold: h(u) < cost(u,v) + h(v)
— Informally: heuristic must obey the triangle inequality

— Counterexample that shows why this is meaningful:

f\o

Q,(WB > {(V\ + c,(u ,v

NOT Moo ToONME

A* algorithm — Correctness proof 1/2

m Variant of the correctness proof for Dijkstra

— Similarly as for Dijkstra, we make the simplifying
assumption that the dist(s, u) + h(u) are all different

— Then we can order the nodes u;, u,, Us, ... such that
dist(s, u;) + h(u;) < dist(s, u,) + h(u,) <

— Just as for Dijkstra we now prove by induction over i:
In round i, node u; is settled and dist[u;] = dist(s, u;)

— Since we have already seen the proof for Dijkstra, we give
this proof in condensed form ... verify for yourself!

A* algorithm — Correctness proof 2/2

ONAR -o.e/\a_,d. -
mCasei=1 < M
~ Inround 1, dist[u,] = 0 = dist(s, s) = dist(s, u)) (Y Yt
m Case i > 1: induction step from < itoi s Yo way

— Let v be the direct pred Lgsor of u; on SP from s to u;

M OVOTENIC g ut ¢

— Then dist(s,v) + h(v) < dist(s,v) + c(v,u;) + h(y;) =

dist(s,u;) + h(u;) ... hencev = u; for somej < i
— After v was settled and arc (v,u. relaxed in round ; < i
| RELAXATON e UCTioN HPOTHES)
dist[u;] < dist[v] + c(v,u;) = dist(s,v) + c(v, u) = dlst S, g}@mwc
— Forj > |, dISt[UJ] + h(uJ) > dist(s, uJ) + h(uJ) > dlst(s u,) + h(u;)

— Hence u; is settled in round i with dist[u;] = dist(s,u;)

10

A* algorithm — Two heuristics

m Straight-line distance (also: as-the-crow-flies distance)

ReTALL -

~ Take h(u) = eucl(u, t) / Vo, v = Y+
where eucl(u,t) is the Euclidean distance from u to t
» and v, is the maximum speed
— Admissible and monotone because of triangle inequality

— Optional theoretical exercise: verify this!

m Landmark heuristic

— Informally: for every node u, precompute distances to a set
of pre-selected nodes, called landmarks

— How to obtain a heuristic function from that ... next slides

11

A* with landmarks 1/4

m Basic idea (first explained for directed graphs)

— Consider an arbitrary node { and call it a landmark

— Our SP distance function dist satisfies the triangle inequality:
dist(u, v) < dist(u, w) + dist(w, v) for all nodes u, v, w

— Then, in particular, for all landmarks £ and all nodes u, v
dist(u,f) < dist(u,v)+dist(v,£) = dist(u)—dist(v,f) < dist(u,v)
dist({,v) < dist({,u)+dist(u,v) = dist(f,v)—dist(f,u) < dist(u,v)

— Hence, for a landmark £, a target node t, and any node u
h(u) := max(dist(u,£)—dist(t,f) , dist(f,t)—dist(f,u)) < dist(u,t)

— For undirected graphs, dist(x,y) = dist(y,x) for all x,y and thus:
h(u) := |dist(f,u)—dist(f,t)| < dist(u,t)

12

A* with landmarks 2/4

m When is this a good lower bound?

— When one of these two inequalities is "close" to equality
dist(u,f) < dist(u,t)+dist(t,f) or dist({,t) < dist({,u)+dist(u,t)

— For the first inequality, this happens when t lies "close" to
the shortest path from u to { ... landmark "behind" target

— For the second inequality, this happens when u lies "close" to
the shortest path from £to t ... landmark "before" u

— Intuitively, landmark must be close to line through u and t
— There is no £ which achieves this for all u and t

_/5‘)
< 0
o >0

v J
e +
UA-

13

A* with landmarks 3/4

m Pick a set L of landmarks

— For each { € L we have
max(dist(u,£)—dist(t,f) , dist(f,t)—dist(f,u)) < dist(u,t)
— Hence also
max, . {max(dist(u,f)—dist(t,f) , dist({,t)—dist(f,u))} < dist(u,t)
— When is the left hand side a good lower bound?
» Obviously, the more landmarks the better

» But for each landmark {, we need to precompute and store
dist(u, £) and dist(¢, u) for all nodes u

Also, computing the lower bound at query time is ~ |L|

» For a fixed humber of landmarks, the more "distributed"

over the graph they are the better
14

A* with landmarks 4/4

m Precomputation of landmark distances
— We need dist(u, £) and dist({, u) for all £ and u

— Important: no need to do a Dijkstra for each u !
— A single Dijkstra from { gives us dist({, u) for all u

— Similarly, a single Dijkstra on the graph with all arcs
reversed gives us dist(u, £) for all u

— For our graphs, dist(u, {) = dist(f, u) and the reversed
graph is the same, and so a single Dijkstra per £ suffices

» Heuristic is then h(u) = max,., |dist(f, u) — dist(t, t)|

15

Monotonicity of landmark heuristic

m Let (u,v) be an arbitrary arc with cost c(u, v)
— We have to show that h(u) < c(u,v) + h(v), where
h(u) = max,. {max(dist(u,t)—dist(t,f) , dist({,t)—dist({,u))}
— For a fixed { € LT-d—ist(u,Z) < c(u,v)+dist(v,t) "triangle inequality”
— dist(u,t) — dist(t,f) < c(u,v) + dist(v,t) = dist(t,t) (1)
— Similarly: dist(£,v) < dist(£,u) + c(u,v)

— dist(f,t) — dist(t,u) < c(u,v) + dist(f,t) — dist(¢,v) (2)
!

— Max of (1) and (2) gives us h(u) < c(u,v) + h(v) for a single ¢
— If we then do max,., on both sides, we are done
— Lemma: ifx; <y foralliel = maxg X < maxy;

T Xe =X =43 MY DU B
ce T . :
/}h Nnor > }G’I e 16

Landmark selection

m We look at two heuristics

— Random selection
Not bad, but suboptimal distribution
— Greedy farthest node selection
Start with a random node, then iteratively add more
» In each iteration, pick the node u which maximizes
min, . dist({, u), where L' = nodes aiready selected
intuitively: u is "farthest" from all nodes in L'

How to compute u with min, . dist({, u) for given L' ?

17

Dijkstra from a set of no

= Implementation S
V4
— Initially put all nodes from the set S in the priority queue,
with distance 0, then run ordinary Dijkstra
— Then the distance computed for each node u will be
ming ¢ dist(s, u) ... which we write as dist(S, u)
— It's not obvious that this is true, so we should prove it
» This is one of the optional exercises on Ex. Sheet 3. L CSlv)
» Good thing to do when you prepare for the examn.. st (§)
jw c 20

\
st (S,w) = daat (.Su,,u-)
= dust (S V) + clviu)
= SdAlS) 2 dual (Sv) + o (v)

-

A* — Implementation advice

m No need to implement a new class

— You can easily extend your class DijsktrasAlgorithm

— Just add a member variable Array<int> heuristic ... see Wiki

m Landmark precomputation

— Important: don't execute one Dijsktra for each node

— For undirected graphs, one Dijkstra per landmark suffices
» for each {, this gives you dist({, u) for all u
» heuristic is h(u) = max,. {|dist({, u) — dist({, t)|}

— Note that the heuristic h must be computed per query

for simplicity, for a given query, first compute h(u) for
all nodes u ... see design suggestion linked from Wiki

19

References

m The original "A* with landmarks" paper
Computing the shortest path: A* search meets graph theory
A. Goldberg and C. Harrelson, SODA 2005
http://portal.acm.org/citation.cfm?doid=1070432.1070455
http://www.avglab.com/andrew/pub/soda05.pdf

20

21

