
Efficient Route Planning
SS 2012

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 4, Wednesday May 16th, 2012
(Arc flags, Visualization)

Overview of this lecture

 Organizational
– Feedback and results from Exercise Sheet 3 (A-Star)

 Arc Flags algorithm
– A method for very strong goal direction
– How to compute the actual shortest path

(that is, the arcs along the path and not just the total cost)

 Exercise Sheet 4
– Implement a part of Arc Flags (single region) and

… run some queries as usual

… visualize the search space for one query

2

Your Feedback on Ex. Sheet 3 (A-Star)

 Summary / excerpts last checked May 16, 16:14

– 6 – 9 hours was typical, a few needed less, some more

– Some used quite some extra time for refactoring old code

– Implementation advice in the lecture was useful again

– Feedback from the tutors was much appreciated again

– Rounding in A-Star can impact admissability / monotonicity

rounding arc costs up always works

– Question about landmarks: one standard Dijkstra per
landmark, or one set Dijkstra for all landmarks together?

It's one Dijkstra per landmark, no set Dijkstra here

The set Dijkstra was just for selecting a set of landmarks
that are as "far apart" from each other as possible

3

Experimental results from ES 3 (A-Star)

 See the table on the Wiki

– #settled nodes (= size of search space) much decreased:

Dijkstra: 100,000 / 1,200,00 (Saarland / BaWü)

A*-Straight: 50,000 / 500,000

A*-Landmarks: 5,000 / 50,000

– query times accordingly

Dijkstra: 20ms / 500ms

A*-Straight: 20ms / 250ms

A*-Landmarks: 1ms / 15ms

– Bottom line: A*-Straight helps a little, A*-LMs helps a lot

4

Arc flags — Basic idea 1/2

 Precomputation

– Divide the map into "compact" regions of about equal size

– For each arc, compute "direction signs" for each region

– We call these direction signs arc flags

5

A B C D

E F G H

Arc flags — Basic idea 2/2

 At query time

– Determine the region containing the target node

– In Dijkstra's algorithm, outside of that region, consider
only arcs with direction signs towards that region

6

H
source

(outside H)
target

(inside H)

Arc Flags – Formal Definition 1/2

 Properties of the arc flags

– Each arc has one arc flag per region, which is 0 or 1

– The arc flags for a fixed region R (one per arc) must have
the following properties:

for nodes u and r, with u arbitrary and r in R:

there is a shortest path from u to r such that
the flags of all arcs on that path are set to 1

Note: there may be several shortest path from u to r;
it is enough that one of them has this property

– Several ways to compute such arc flags ... later slides

7

Arc Flags – Formal Definition 2/2

 Query algorithm

– Given a query from a node s to a node t, both arbitrary

– Determine the region R containing t

this requires that each node lies in some region

– Execute an ordinary Dijkstra on the subgraph formed by
those arcs with flags for R set to 1

this could be implemented by making a copy of the
graph, where we only consider those arcs

but it is equivalent, and more efficient, to simply
ignore the arcs with flags for R set to 0

see implementation advice on later slide

8

Arc Flags — Correctness

 Consider a query from s to t, both arbitrary

– Let R be the region containing t

– Given the properties of the arc flags:

there exists a shortest path from s to t such that
the flags for R on all arcs on that path are 1

– Hence that path also exists in the subgraph consisting
only of those arcs with flags for R set to 1

– Since we only remove arcs and don't add any, there
can't be a better path in the subgraph

– Hence Dijkstra will find that path, or one with equal cost

9

Arc flags — Precomputation 1/7

 Naive way: For each region R do the following

– Do the following for each node r in R:

Run Dijkstra starting from r in the reverse graph, until all
nodes (reachable from r) are settled

This gives us the shortest path from each node u in the
graph to r ... how to obtain paths  later slide

Set flag for each arc that is on one of these paths

– This obviously fulfills the arc flags property, recall:

for each u and r, with u arbitrary and r in R

there must be a SP from u to r with all flags set

– The above algorithm computes one such SP for each u and r

10

Arc flags — Precomputation 2/7

 Cost of this naive precomputation

– One Dijkstra for each node in each region

– This is one Dijkstra for each node in the graph

– The cost of each Dijkstra is ~ m · log n

where m = #arcs and n = #nodes

– This is cost ~ n · m · log n overall

– Even when m = Θ(n) that is quadratic in n

– That would be infeasible already for BaWü

11

Arc flags — Precomputation 3/7

 Better way: For each region R do the following

– Compute the set of boundary nodes of R:

a boundary node is a node u in R with at least one
arc u,v such that v not in R

– As before, but now only for each boundary node r:

Run Dijkstra starting from r in the reverse graph,
until all nodes (reachable from r) are settled

Set all flags on all shortest paths thus computed

– Additionally, set flags of all arcs u,v inside of R

an arc u,v is inside of R if both u and v are in R

12

Arc flags — Precomputation 4/7

 Correctness of this "better way":

– Consider a query from s to t, with s arbitrary and t in R

– Consider any SP from s to t

– Case 1: all arcs on that SP are inside of R

Then this SP will be found at query time, because all
arcs inside of R are set

– Case 2: not all arcs on that SP are inside of R

Since t is in R, there must be one arc v,u on the SP
with v not in R and u in R

The subpath from s to u is a SP from s to u

The precomputation for u will find this path or a path
of equal cost and set the flags of all arcs on it

13

Arc flags — Precomputation 5/7

 Finer points of this argument

– Note that even if s and t both lie in R, both cases can
happen:

14

Arc flags — Precomputation 6/7

 Precomputation costs of the "better way":

– We now have one Dijkstra per boundary node

– So the total cost is ~ b · n · log m

where b = #boundary nodes, n = #nodes, m = #arcs

– The size of b depends on the division into regions

– Here is an estimate, if we divide into k square regions

and assuming that the nodes are equally distributed

each region contains ~ n/k nodes

of those, ~ 4 · (n/k)1/2 lie on the boundary

hence b ~ 4 · (n·k)1/2

– Hence total cost Ω(n3/2 · log m) even for Θ(1) regions

15

Arc flags — Precomputation 7/7

16

 Space consumption for storing the arc flags

– Assume we have k regions, then we need k bits per arc

That is k/8 · m Bytes, where m = #arcs

– Let's compare that to the storage needed for the graph

12 bytes per node (OSM id + latitude + longitude)

8 bytes per arc (head node id + cost)

That is 12n + 8m bytes, where n = #nodes, m = #arcs

For road networks we have m ≈ 2.25n

That is, we need about 13 bytes / arc for the graph

So for k > 100 the arc flags start to become expensive
also storage-wise

Arc flags — Division into regions

 What is a good division into regions

– For a fixed number of regions we want to minimize the total
number of boundary nodes

Intuitively, this calls for "compact" regions

– Dividing a graph into k subgraphs of similar sizes with a
minimal number of boundary nodes is a hard problem (graph
partitioning)

– Rectangular regions are ok, but not optimal

for road networks, can contain widely different #nodes

– Something like a KD-tree gives an even distribution of the
#nodes / region, but not necessarily a small #boundary nodes

17

Paths, not only costs 1/5

 So far we only computed SP costs, not the paths

– For the arc flags precomputation we need the paths

– Any route planning system will want to output paths

– So how do we get the actual paths?

18

Paths, not only costs 2/5

 There is a generic way

– Assume we have stored the dist(s, u) for all nodes u that
we have settled in a Dijkstra / A* computation from s to t

– Then we can compute an SP from s to t as follows:

Consider the set W of all nodes w such that w was
settled in the computation above and an arc w,t exists

Note that there will be at least one such w, namely the
node from which t got its label by relaxing

Compute v = argminwϵW dist(s, w) + cost(w,t)

Then v is a predecessor on an SP from s to t

Now repeat with v in place of t ... until s is reached

19

Paths, not only costs 3/5

 But easier to compute this during Dijkstra

– Along with the dist value for each node

– Also maintain a parent pointer for each node

– This is simply the id of the node from which the current
dist value comes via relaxation

(Initialize to some non node id, for example -1)

– By the correctness proof of Dijkstra / A*, the parent
pointer of each settled node u than points to the
predecessor on a shortest path from s to u

– That is, this pointer exactly points us to the v computed
with the argmin on the previous slide

20

Paths, not only costs 4/5

 A small example

21

Paths, not only costs 5/5

 The parent pointers form a tree rooted at s

– This can be proven by by a simple extension of our
correctness proof for Dijkstra / A*

(assuming the same order of nodes u1, u2, u3, ...)

– Namely, we can prove (by induction) that in iteration i:

ui is settled

dist[ui] = dist(s, ui)

parent[ui] = the predecessor of ui on an SP from s to u

– This implies that there can be no cycles not containing s

– And no cycles containing s either, because s has no parent

22

Arc Flags — Implementation Advice

 For the Ex. Sheet: a single rectangular region R

– Write a new class ArcFlagsAlgorithm

– Ok to compute the boundary nodes in the trivial way

iterate over all arcs u,v and mark u as boundary
node if u in R and v not in R

– Execute one Dijkstra per boundary node

– Add a member variable arcFlag to your Arc class

– Extend your class DijkstrasAlgorithm by a mode that
relaxes an Arc only if the arcFlag is set ... that's trivial

– See the code design suggestion on the Wiki

– New stuff is commented with // NEW(lecture-4): ...

23

Search space comparison 1/3

 Set of settled / visited nodes for Dijkstra

24

Search space comparison 2/3

 Set of settled / visited nodes for A-Star

25

Search space comparison 3/3

 Set of settled / visited nodes for Arc Flags

26

Google Fusion Tables

 Nice tool to visualize geo data on Google Maps

– You can upload a CSV file with coordinates, e.g.

47.95 7.75
47.95 7.90
48.05 7.75
48.05 7.90

– And then draw the points on Google Maps with one click

– In the visualization, there is a button for a permanent link
to your visualization

– For Ex. Sheet 4: visualize the set of visited nodes for one
of your queries and link to it in the result table on the Wiki

– http://www.google.com/fusiontables

27

References

 First arc flag paper
An extremely fast, exact algorithm for finding shortest

paths in static networks with geographical background

Ulrich Lauther, Münsteraner GI-Tage 2004

https://gor.uni-paderborn.de/Members/AG06/LAUTHER.PDF

 Arc flags with various tricks + a hierarchy of regions
Acceleration of Shortest Path and Constrained Shortest Path

Computation

E. Köhler and R. Möhring and H. Schilling, WEA 2005

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-042-2004.pdf

http://www.springerlink.com/content/wc06qawxy5bc5bj0/

28

29

