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Overview of this lecture

 Organizational
– Feedback and results from Exercise Sheet 3 (A-Star)

 Arc Flags algorithm
– A method for very strong goal direction
– How to compute the actual shortest path

(that is, the arcs along the path and not just the total cost)

 Exercise Sheet 4
– Implement a part of Arc Flags (single region) and

… run some queries as usual

… visualize the search space for one query
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Your Feedback on Ex. Sheet 3 (A-Star)

 Summary / excerpts last checked May 16, 16:14

– 6 – 9 hours was typical, a few needed less, some more

– Some used quite some extra time for refactoring old code

– Implementation advice in the lecture was useful again

– Feedback from the tutors was much appreciated again

– Rounding in A-Star can impact admissability / monotonicity

rounding arc costs up always works

– Question about landmarks: one standard Dijkstra per 
landmark, or one set Dijkstra for all landmarks together?

It's one Dijkstra per landmark, no set Dijkstra here

The set Dijkstra was just for selecting a set of landmarks
that are as "far apart" from each other as possible
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Experimental results from ES 3 (A-Star)

 See the table on the Wiki

– #settled nodes (= size of search space) much decreased:

Dijkstra:   100,000 / 1,200,00 (Saarland / BaWü)

A*-Straight:    50,000 /  500,000

A*-Landmarks:   5,000 /    50,000

– query times accordingly

Dijkstra: 20ms / 500ms

A*-Straight:  20ms / 250ms

A*-Landmarks:   1ms / 15ms

– Bottom line: A*-Straight helps a little, A*-LMs helps a lot
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Arc flags — Basic idea   1/2

 Precomputation

– Divide the map into "compact" regions of about equal size

– For each arc, compute "direction signs" for each region

– We call these direction signs arc flags
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Arc flags — Basic idea   2/2

 At query time

– Determine the region containing the target node

– In Dijkstra's algorithm, outside of that region, consider 
only arcs with direction signs towards that region
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Arc Flags – Formal Definition   1/2

 Properties of the arc flags

– Each arc has one arc flag per region, which is 0 or 1

– The arc flags for a fixed region R (one per arc) must have 
the following properties:

for nodes u and r, with u arbitrary and r in R:

there is a shortest path from u to r such that
the flags of all arcs on that path are set to 1

Note: there may be several shortest path from u to r;
it is enough that one of them has this property

– Several ways to compute such arc flags ... later slides
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Arc Flags – Formal Definition   2/2

 Query algorithm

– Given a query from a node s to a node t, both arbitrary

– Determine the region R containing t

this requires that each node lies in some region

– Execute an ordinary Dijkstra on the subgraph formed by 
those arcs with flags for R set to 1

this could be implemented by making a copy of the 
graph, where we only consider those arcs

but it is equivalent, and more efficient, to simply 
ignore the arcs with flags for R set to 0

see implementation advice on later slide
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Arc Flags — Correctness

 Consider a query from s to t, both arbitrary

– Let R be the region containing t

– Given the properties of the arc flags:

there exists a shortest path from s to t such that
the flags for R on all arcs on that path are 1

– Hence that path also exists in the subgraph consisting 
only of those arcs with flags for R set to 1

– Since we only remove arcs and don't add any, there 
can't be a better path in the subgraph

– Hence Dijkstra will find that path, or one with equal cost
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Arc flags — Precomputation   1/7

 Naive way: For each region R do the following

– Do the following for each node r in R:

Run Dijkstra starting from r in the reverse graph, until all 
nodes (reachable from r) are settled

This gives us the shortest path from each node u in the 
graph to r ... how to obtain paths  later slide

Set flag for each arc that is on one of these paths

– This obviously fulfills the arc flags property, recall:

for each u and r, with u arbitrary and r in R

there must be a SP from u to r with all flags set

– The above algorithm computes one such SP for each u and r

10



Arc flags — Precomputation   2/7

 Cost of this naive precomputation

– One Dijkstra for each node in each region

– This is one Dijkstra for each node in the graph

– The cost of each Dijkstra is ~ m · log n

where m = #arcs and n = #nodes

– This is cost ~ n · m · log n overall

– Even when m = Θ(n) that is quadratic in n

– That would be infeasible already for BaWü
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Arc flags — Precomputation   3/7

 Better way: For each region R do the following

– Compute the set of boundary nodes of R:

a boundary node is a node u in R with at least one 
arc u,v such that v not in R

– As before, but now only for each boundary node r:

Run Dijkstra starting from r in the reverse graph, 
until all nodes (reachable from r) are settled

Set all flags on all shortest paths thus computed

– Additionally, set flags of all arcs u,v inside of R

an arc u,v is inside of R if both u and v are in R
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Arc flags — Precomputation   4/7

 Correctness of this "better way":

– Consider a query from s to t, with s arbitrary and t in R

– Consider any SP from s to t

– Case 1: all arcs on that SP are inside of R

Then this SP will be found at query time, because all 
arcs inside of R are set

– Case 2: not all arcs on that SP are inside of R

Since t is in R, there must be one arc v,u on the SP 
with v not in R and u in R

The subpath from s to u is a SP from s to u

The precomputation for u will find this path or a path 
of equal cost and set the flags of all arcs on it
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Arc flags — Precomputation   5/7

 Finer points of this argument

– Note that even if s and t both lie in R, both cases can 
happen:
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Arc flags — Precomputation   6/7

 Precomputation costs of the "better way":

– We now have one Dijkstra per boundary node

– So the total cost is ~ b · n · log m

where b = #boundary nodes, n = #nodes, m = #arcs

– The size of b depends on the division into regions

– Here is an estimate, if we divide into k square regions

and assuming that the nodes are equally distributed

each region contains ~ n/k nodes

of those, ~ 4 · (n/k)1/2 lie on the boundary

hence b ~ 4 · (n·k)1/2

– Hence total cost Ω(n3/2 · log m) even for Θ(1) regions
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Arc flags — Precomputation   7/7
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 Space consumption for storing the arc flags

– Assume we have k regions, then we need k bits per arc

That is k/8 · m Bytes, where m = #arcs

– Let's compare that to the storage needed for the graph

12 bytes per node (OSM id + latitude + longitude)

8 bytes per arc (head node id + cost)

That is 12n + 8m bytes, where n = #nodes, m = #arcs

For road networks we have m ≈ 2.25n

That is, we need about 13 bytes / arc for the graph

So for k > 100 the arc flags start to become expensive 
also storage-wise



Arc flags — Division into regions

 What is a good division into regions

– For a fixed number of regions we want to minimize the total 
number of boundary nodes

Intuitively, this calls for "compact" regions

– Dividing a graph into k subgraphs of similar sizes with a 
minimal number of boundary nodes is a hard problem (graph 
partitioning)

– Rectangular regions are ok, but not optimal

for road networks, can contain widely different #nodes

– Something like a KD-tree gives an even distribution of the 
#nodes / region, but not necessarily a small #boundary nodes
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Paths, not only costs   1/5

 So far we only computed SP costs, not the paths

– For the arc flags precomputation we need the paths

– Any route planning system will want to output paths

– So how do we get the actual paths?
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Paths, not only costs   2/5

 There is a generic way

– Assume we have stored the dist(s, u) for all nodes u that 
we have settled in a Dijkstra / A* computation from s to t

– Then we can compute an SP from s to t as follows:

Consider the set W of all nodes w such that w was 
settled in the computation above and an arc w,t exists

Note that there will be at least one such w, namely the 
node from which t got its label by relaxing

Compute v = argminwϵW dist(s, w) + cost(w,t)

Then v is a predecessor on an SP from s to t

Now repeat with v in place of t ... until s is reached
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Paths, not only costs   3/5

 But easier to compute this during Dijkstra

– Along with the dist value for each node

– Also maintain a parent pointer for each node

– This is simply the id of the node from which the current 
dist value comes via relaxation

(Initialize to some non node id, for example -1)

– By the correctness proof of Dijkstra / A*, the parent 
pointer of each settled node u than points to the 
predecessor on a shortest path from s to u

– That is, this pointer exactly points us to the v computed 
with the argmin on the previous slide
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Paths, not only costs   4/5

 A small example
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Paths, not only costs   5/5

 The parent pointers form a tree rooted at s

– This can be proven by by a simple extension of our 
correctness proof for Dijkstra / A*

(assuming the same order of nodes u1, u2, u3, ...)

– Namely, we can prove (by induction) that in iteration i:

ui is settled

dist[ui] = dist(s, ui)

parent[ui] = the predecessor of ui on an SP from s to u

– This implies that there can be no cycles not containing s

– And no cycles containing s either, because s has no parent
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Arc Flags — Implementation Advice

 For the Ex. Sheet: a single rectangular region R

– Write a new class ArcFlagsAlgorithm

– Ok to compute the boundary nodes in the trivial way

iterate over all arcs u,v and mark u as boundary 
node if u in R and v not in R

– Execute one Dijkstra per boundary node

– Add a member variable arcFlag to your Arc class

– Extend your class DijkstrasAlgorithm by a mode that 
relaxes an Arc only if the arcFlag is set ... that's trivial

– See the code design suggestion on the Wiki

– New stuff is commented with // NEW(lecture-4): ...
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Search space comparison   1/3

 Set of settled / visited nodes for Dijkstra
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Search space comparison   2/3

 Set of settled / visited nodes for A-Star
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Search space comparison   3/3

 Set of settled / visited nodes for Arc Flags
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Google Fusion Tables

 Nice tool to visualize geo data on Google Maps

– You can upload a CSV file with coordinates, e.g.

47.95 7.75
47.95 7.90
48.05 7.75
48.05 7.90

– And then draw the points on Google Maps with one click

– In the visualization, there is a button for a permanent link
to your visualization

– For Ex. Sheet 4: visualize the set of visited nodes for one 
of your queries and link to it in the result table on the Wiki

– http://www.google.com/fusiontables
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