
Efficient Route Planning
SS 2012

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 6, Wednesday June 6th, 2012
(Contraction Hierarchies, Part 1 of 2)

Overview of this lecture

 Organizational
– Feedback and results from Exercise Sheet 5 (Web app)

 Contraction Hierarchies (CHs)
– Yet another (clever) algorithm for fast route planning

– Basic idea: far away from source / target only use
"important" roads (think of highways)

– This lecture: outline + the central "contraction" procedure

– Next lecture: missing details, so that you know how to build a
route planner based on CH

– Exercise Sheet 6: implement the central contraction method

(that will be the basic building block of the CH pre-processing)

2

Your Feedback on Ex. Sheet 5 (Web app)

 Summary / excerpts last checked June 6, 15:51

– Fun exercise / interesting to see how web apps work

– Nice to see our algorithms in action / that it really works

– Server side was relatively straightforward

though some used the opportunity for further imprvments

– Client side was not hard, but quite a lot of new stuff

code provided was (of course) very useful

though one said it made thing too easy

– Typical time investment 4-6 hours / student

3

Your web applications

 Let's have a look at a few demos

– One with comparison to Google API

Observation: both routes reasonable, but often different

Reason: Google seems to penalize certain turns

– One on Baden-Württemberg (not Baden-Würrtenberg)

Observation: Query time independent of dist(s, t)

Reason: Heuristic function computed for all nodes

4

Bidirectional Dijkstra 1/4

 Basic idea

– "Simultaneously" search from both source and target

– Stop when the search spaces "meet"

– This reduces the search space only by a factor of ~ 2

– However: bi-directional search is an important ingredient
in many of the more sophisticated algorithms ... like CH

5

Bidirectional Dijkstra 2/4

 Implementation

– Interleave the two Dijkstra computations as follows

in each step, one iteration from the Dijkstra where the
smallest key in the PQ is smaller

alternatively, maintain a joint priority queue, where each
item in the PQ knows to which Dijkstra it belongs

– Stop when settling a node from one Dijkstra that is already
settled in the other Dijkstra

that node is is not necessarily on the SP ... next slide

– The cost of the shortest path is then

min {dists[u] + distt[u] : for all u visited in both Dijkstras}

6

Bidirectional Dijkstra 3/4

 Counterexample

– ... where the first node that is settled in both searches
does not lie on the shortest path

7

Bidirectional Dijkstra 4/4

 Correctness proof

– Let D = dist(s, t), the cost of the SP from s to t

– Let u be the first node settled in both Dijkstras

– If both dist labels of u are exactly D/2, we are done

– If not, one of the dist labels must be > D/2

– Hence all nodes with dist ≤ D/2 have already been settled

– Let vs and vt on a shortest path from s to t such that

dist(s, vs) ≤ D/2 and dist(vt, t) ≤ D/2

– Then vs has already been settled in the Dijkstra from s,
and the relaxation has set dists[vt] = dist(s, vt)

– Same for vt, hence dists[vt] + distt[vt] = dist(s,t)

8

Hierarchical Approaches 1/4

 Basic intuition

– "Far away" from the source and target, consider only
"important" roads ... the further away, the more important

– Let's look at the shortest path of some random queries on
Google Maps, typically:

close to source and target: mainly white (residential) roads

a bit further away: mainly yellow (national) roads

even further away: mainly orange (motorway) roads

– But also note that this is not always true

9

Hierarchical Approaches 2/4

 This intuition leads to the following heuristic

– Indeed consider the types / colors from the road, with an
order between them, e.g. white < yellow < orange

– Have a radius for each color > white: ryellow, rorange

– Run a bi-directional Dijkstra, with the following constraints

at distance ≥ ryellow from source and target, consider
only roads of type ≥ yellow

at distance ≥ rorange from source and target, consider
only roads of type ≥ orange

– Note: this does not necessarily find the shortest path

– Still, heuristics of this kind were employed in navigation
devices for a long time ... since no better algo's were known

10

Hierarchical Approaches 3/4

 Highway Hierarchies (HHs)

– Compute a level for each arc

– Along with a radius for each level: r1, r2, r3, ...

– Similarly as for the heuristic, run bi-directional Dijkstra

constraint now: at distance ≥ ri from the source and
target, consider only arcs of level ≥ i

– This was first made precise in an ESA 2005 paper by
Schultes and Sanders (KIT, Karlsruhe) ... see references

– Note: the basic idea is simple, but the (implementation)
details are quite intricate, in particular:

hard to get the implementation error-free in practice

11

Hierarchical Approaches 4/4

 Contraction Hierarchies (CHs)

– Compute a level for each node

– At query time again do a bidirectional Dijkstra

in the Dijkstra from the source consider only arcs u,v
where level(v) > level(u) ... so called upwards graph

in the Dijkstra from the target, consider only arcs v,u
with level(v) > level(u) ... so called downwards graph

– Intuitively, this is like a "continuous" version of highway
hierarchies ... and significantly easier to implement

– We will look at CH in more detail now ...

12

CH — Precomputation 1/4

 Contraction of a single node

– This is the basic building block of the CH precomputation

– Idea: take out a node, and add all necessary arcs such that
all SP distances in the remaining graphs are preserved

– Formally, a node v is contracted as follows

Let {u1,...,ul} be the incoming arcs, i.e. (ui, v) ϵ E

Let {w1,...,wk} be the outgoing arcs, i.e. (v, wj) ϵ E

For each pair {ui, wj}, if (ui, v, wj) is the only shortest
path from ui to wj, add the shortcut arc (ui, wj)

Then remove v and its adjacent arcs from the graph

13

CH — Precomputation 2/4

 Example for contraction of a single node

14

CH — Precomputation 3/4

 Contraction of all nodes in the graph

– Let u1, ..., un be an arbitrary order of the nodes

– We will see that CH is correct for any order, but more
efficient for some orders than for others ... next lecture

– Let G = G0 be the initial graph

– Let Gi be the graph obtained from Gi-1 by contracting ui

that is, without ui and adjacent arcs and with shortcuts

in particular therefore, Gi has n – i nodes

– In the end, let G* = the original graph with all nodes and
arcs and all shortcuts from any of the G1, G2, ...

– In the implementation, we can work on one and the same
graph data structure throughout the algorithm ... later slide

15

CH — Precomputation 4/4

 Example for contraction of all nodes in a graph

16

CH — Query algorithm 1/2

 Given G* = (V, E*) and a source s and a target t

– Define the upwards graph G* = (V, {(u, v) ϵ E* : v > u})

– Define the downwards graph G* = (V, {(u, v) ϵ E* : v < u})

– Do a full Dijkstra computation from s forwards in G*

– Do a full Dijkstra computation from t backwards in G*

– Let I be the set of nodes settled in both Dijkstras

– Take dist(s, t) = min {dist(s, v) + dist(v, t) : v ϵ I}

– Is this correct and if yes why? ... next lecture

– In the implementation, we need not construct G* and G*
explicitly, we can just work on G* ... next lecture

– In symm. graphs backw. on G* = forw. on G* ... next lecture

17

CH — Query algorithm 2/2

 Example query on our example graph from before

18

Shortcuts 1/3

 How to determine when a shortcut is needed?

– Recall: when contracting node v, we need to insert the
shortcut arc (u, w), if and only if (u, v) ϵ E and (v, w) ϵ E
and (u, v, w) is the only shortest path from u to w

– As before, {ui} = incoming arcs and {wj} = outgoing arcs

– Perform a Dijkstra for each ui in the graph without v

– Let Dij = cost(ui, v) + cost(v, wj) ... cost of path via v

– In the Dijkstra from ui

... stop when node with cost > maxj Dij is settled

... add shortcut (ui, wj) if and only if dist[wj] > Dij

19

Shortcuts 2/3

 Correctness of this routine
– Assume there is a SP from ui to wj that does not pass

through v
then the cost of that SP is ≤ Dij and the Dijkstra from
ui just described will not stop before it has found it
then dist[wj] ≤ Dij and indeed no shortcut is added

– Beware: there might be a SP through v with cost < Dij

that looks like a problem, because this might be
shorter than the SP in the graph without v
and we might not add a shortcut although we should
But such a path will then contain (ui', v ,wj')
And this will be taken care of by the Dijkstra from ui'

20

Shortcuts 3/3

 Heuristic improvement
– For each Dijkstra computation (from each of the ui), put

a limit on the size of the search space (#nodes settled)

With this heuristic, we may fail to find a shortest path
from ui to wj that does not use v, and thus insert the
shortcut (ui, wj) unnecessarily

But unnecessary shortcuts do not harm correctness,
only performance (if there are too many of them)

So there is a trade-off: if the heuristic saves a lot of
time in the precomputation at the cost of only a few
unnecessary shortcuts, than it is worth it

– Various additional heuristics in the paper ... see references

21

Implementation advice 1/2

 How to add shortcuts / remove contracted nodes?

– If you implemented the adjacency lists with an
Array<Array<Arc>>, adding arcs is straightforward

– But make sure that either your Dijkstra implementation
does not have a problem with the same arc existing twice
... or that you avoid adding an already existing arc

– Removing nodes / arcs from the graph is more
cumbersome, but luckily there is no need to do that

– Instead, you can just ignore the respective nodes / arcs

– In the precomputation, when contracting ui, simply
ignore all nodes u1,...ui-1 and their adjacent arcs

– You can use Arc::arcFlag for that ... see code suggestion

22

Implementation advice 2/2

 The Dijkstra searches for each contraction
– ... should take only very little time (<< 1 millisecond)

for the full CH algorithm, we have to do one per node

– To achieve that, pay attention to the following

make sure that the Dijkstra search spaces are small
... see the three slides on "Shortcuts"

requires two trivial extensions of DijsktrasAlgorithm
class ... see code design suggestion linked on Wiki

avoid resetting the dist value for every node ... this
would take Θ(n) time for each (tiny) Dijkstra

instead only reset the dist values of nodes that were
visited in the previous Dijkstra (visitedNodes array)

23

References

 Highway Hierarchies
Engineering Highway Hierarchies

Highway Hierarchies Hasten Exact Shortest Path Queries

Dominik Schultes and Peter Sanders, ESA 2005 & 2006

http://algo2.iti.uka.de/schultes/hwy/esa06HwyHierarchies.pdf

http://algo2.iti.uka.de/schultes/hwy/esaHwyHierarchies.pdf

 Contraction Hierarchies
Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks

Geisberger, Sanders, Schultes, Delling, WEA 2008

http://algo2.iti.uka.de/schultes/hwy/contract.pdf

24

25

