
Efficient Route Planning
SS 2012

Lecture 7, Wednesday June 13th, 2012
(C t ti Hi hi P t 2 f 2)(Contraction Hierarchies, Part 2 of 2)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of this lecture

 Organizational
– Feedback and results from Exercise Sheet 6 (CH, part 1)

 Contraction Hierarchies, Part 2 of 2,
– Query algorithm + example again

– Correctness proof

– Good node orderings

– Exercise Sheet 7: implement a basic version of CH

Query algorithm (easy)

Simple node ordering (not hard either)

Use it to run 1000 queries and report results on the Wiki

Again: not much code, but you have to understand what
you are doingyou are doing

2

Your Feedback on Ex. Sheet 6 (CH, part 1)

 Summary / excerpts last checked June 13, 14:59

– Was quite doable for most, difficultywise and timewise

– Not much code, but many opportunities for mistakes

– Graphic example in the lecture was helpful

– Unit test for contractNode was most of the work

– Thanks to the tutor for the great comments + answers

3

Your node contraction results

 Summary

– Best contraction times indeed just a few µs per node

Note: 10µs / node 10s / 1M nodes 24s for BaWüNote: 10µs / node 10s / 1M nodes 24s for BaWü

– Number of shortcuts for 1000 random nodes

~ 800 require 1 > 100 require 3 ~ 70 require 0~ 800 require 1, > 100 require 3, ~ 70 require 0

Note: 3 is much more frequent than 2 ... why?

Edge differences (ED) for these 1000 random nodes– Edge differences (ED) for these 1000 random nodes

Only ~ 10 have an ED of -2 (which is good)

h fMost have an ED of -1 or 0 or 1

– These results suggests that picking nodes in a random order
would add many more shortcuts than optimally possiblewould add many more shortcuts than optimally possible

4

CH — Query algorithm 1/2 (from last lecture)Q y g

 Given G* = (V, E*) and a source s and a target t

– Define the upwards graph G* = (V, {(u, v) ϵ E* : v > u})

– Define the downwards graph G* = (V, {(u, v) ϵ E* : v < u})Define the downwards graph G (V, {(u, v) ϵ E : v < u})

– Do a full Dijkstra computation from s forwards in G*

– Do a full Dijkstra computation from t backwards in G*– Do a full Dijkstra computation from t backwards in G

– Let I be the set of nodes settled in both Dijkstras

Take dist(s t) min {dist(s v) + dist(v t) : v ϵ I}– Take dist(s, t) = min {dist(s, v) + dist(v, t) : v ϵ I}

– Is this correct and if yes why? ... slides 8 – 13

h l d * d *– In the implementation, we need not construct G* and G*
explicitly, we can just work on G* ... slides 17 + 18

In symm graphs backw on G* forw on G* slide 7– In symm. graphs backw. on G* = forw. on G* ... slide 7

5

CH — Query algorithm 2/2 (from last lecture)Q y g

 Example query on the graph from last lecture

6

Symmetric graphsy g p

 For symmetric graphs we only need G*

– Recall the definitions:

Upwards graph G* = (V, {(u, v) ϵ E* : v > u})Upwards graph G (V, {(u, v) ϵ E : v > u})

Downwards graph G* = (V, {(u, v) ϵ E* : v < u})

– A backwards search on an arbitary graph G is equivalent to– A backwards search on an arbitary graph G is equivalent to
a forward search on G with all arcs reversed

– For symmetric graphs, G with all arcs reversed is = GFor symmetric graphs, G with all arcs reversed is G

– G* with all arcs reversed is exactly G*

– Hence a backwards search on G* is exactly the same as aHence a backwards search on G is exactly the same as a
forward search on G*

7

CH — Correctness Proof 1/6

 First, the terminology from last lecture again

– Let u1, ..., un be an arbitrary order of the nodes

we will see that the proof works for any orderwe will see that the proof works for any order

– Let G = G0 be the initial graph

– Let G be the graph obtained from G by contracting u– Let Gi be the graph obtained from Gi-1 by contracting ui

that is, without ui and adjacent arcs and with shortcuts

in particular therefore, Gi has n – i nodesin particular therefore, Gi has n i nodes

– In the end, let G* be the original graph with all nodes and
arcs and all shortcuts from any of the G1, G2, ...1 2

8

CH — Correctness Proof 2/6

 Contraction preserves shortest paths
– Lemma 1: For all i = 1, ..., n we have for all s, t ϵ Gi

distGi(s, t) = distGi-1(s, t)
– Corollary: hence by induction also distGi(s, t) = distG(s, t)

 Proof of Lemma 1 ... it's pretty straightforward

– Consider a SP from s to t in Gi

– If this SP contains no shortcut that was added when ui
d h h h l i Gwas contracted, we have the same path also in Gi-1

– If it does contains a shortcut u, w added then, it means
we have the path u v w in Gi 1 with the same costwe have the path u, v, w in Gi-1 with the same cost

– This proves distGi-1(s, t) ≤ distGi(s, t)

– An analogous arguments proves distGi(s t) ≤ distGi 1(s t)An analogous arguments proves distGi(s, t) ≤ distGi-1(s, t)

9

CH — Correctness Proof 3/6

 Correctness of the query algorithm

– Lemma 2: dist(s, t) = min {dists[v] + distt[v] : v ϵ I}
where I is the set of nodes settled in both Dijkstra

 Proof of Lemma 2

– Let v be the largest node (wrt the node ordering) on theLet v be the largest node (wrt the node ordering) on the
SP from s to t in the original graph G

– Consider the prefix maxima on the path from s to v,p p ,
that is, the nodes v0 < v1 < ... < vk such that the SP is

s = v0 * v1 * v2 * ... * vk = v

where the subpaths vi-1 * vi use only nodes < vi-1

10

CH — Correctness Proof 4/6

 Proof of Lemma 2, example of prefix maxima

– From last slide: s = v0 * v1 * v2 * ... * vk = v

where vi 1 < vi and vi 1 * vi uses only nodes < vi 1where vi-1 < vi and vi-1 vi uses only nodes < vi-1

11

CH — Correctness Proof 5/6

 Proof of Lemma 2 (continued)
– From last slide: s = v0 * v1 * v2 * ... * vk = v

– We prove that for each i = 1, ..., k the arc vi-1, vi exists i 1 i
in G* and its cost is exactly distG(vi-1, vi)

– Consider the graph G' just before vi is contracted

– Since vi < vi+1, both vi and vi+1 are in that graph

– By Lemma 1, we have distG'(vi, vi+1) = distG(vi, vi+1)

– The SP from vi to vi+1 in G' can only use nodes ≥ vi

– If that SP would have more than one arc, and the first
ld b th ld h barc would be vi, w ... then w would have been our vi+1

– Hence the SP from vi to vi+1 consist only of a single arc,
and the cost of that arc is distG'(vi vi 1) = distG(vi vi 1)and the cost of that arc is distG'(vi, vi+1) = distG(vi, vi+1)

12

CH — Correctness Proof 6/6

 We are almost done

– We have now proven that distG*(s, v) = distG(s, v)

where v was the largest node on the SP from s to twhere v was the largest node on the SP from s to t

– We can prove analogously that distG*(v, t) = distG(v, t)

– Hence the SP cost will be amongst {dist [v] + dist [v] : v ϵ I}– Hence the SP cost will be amongst {dists[v] + distt[v] : v ϵ I}

– By Lemma 1, distG*(s, t) = distG(s, t), that is, the cost of
no shortest path decreases by adding shortcutsno shortest path decreases by adding shortcuts

– Hence the query algorithm will compute exactly distG(s, t)

13

Node ordering 1/3g

 General approach

– Maintain the nodes in a priority queue, in the order of
how attractive it is to contract the respective node next

– Intuitively: the less shortcuts we have to add, the better

– For each node, maintain the edge difference (ED):, g ()

S = the number of shortcuts that would have to be
added if that node were contracted

E = the number of arcs incident to that node

Then the edge difference is simply ED = S – Eg

– Note: when we contract a node, the edge difference of
any node (not only the neighbours) may get affected

14

Node ordering 2/3g

 How to maintain the ED for each node?

– Initially compute the ED for each node (linear time)

– Straightforward approach: recompute for all nodes afterStraightforward approach: recompute for all nodes after
each single contraction quadratic running time ... no good

– Lazy update heuristic: update EDs "on demand" as follows:y p p

Before contracting node with currently smallest ED,
recompute its ED and see if it is still the smallest

If not pick next smallest one, recompute its ED and see if
that is the smallest now; if not, continue in same way ...

– Neighbours only heuristic: after each contraction, recompute
EDs, but only for the neighbours of the contracted node

– Periodic update heuristic: Full recomputation every x rounds

15

Node ordering 3/3g

 Other criteria

– Spatial diversity is also important, here is an example:

– Spatial diversity heuristic: for each node maintain a
count of the number of neighbours that have already g y
been contracted, and add this to the ED

– Note: the more neighbours have already been
contracted, the later this node will be contracted

16

Implementation Advice 1/2p

 Precomputation

– Add arcs to the original graph, do not make a copy

– Ignore arcs of already contracted nodes using arc flagsIgnore arcs of already contracted nodes using arc flags

– To compute the edge difference of a node, extend your
contractNode method as follows:

add an argument bool computeEdgeDifferenceOnly

default is false; if true do the Dijkstras as usual, butdefault is false; if true do the Dijkstras as usual, but
in the end don't change anything in the graph, but
just return the edge difference

– To know which node to pick next, maintain all nodes in a
priority queue, with key = edge difference

17

Implementation Advice 2/2p

 Query algorithm

– After the precomputation, set arc flags of all arcs u, v with u
> v to true and all others to false

– For the query algorithm, simply use Dijkstra with the
considerArcFlags option (wrt the arc flags above)

one such Dijktra from the source, one from the target

compute dist(s, t) = min{dists[u] + distt[u]} by a simple
scan over the dist arrays from these two Dijkstras

as in the precomputation, avoid an Θ(#nodes) reset of
th di t b t th i it dN d i t dthe dist arrays, but use the visitedNodes array instead

Note: no need to change any arc flags at query time!

18

Computing the actual path (not needed for Ex. Sheet)p g p

 In the precomputation

– When we contract a node v and add a shortcut u, w

then at that time dist(u, w) > cost(u, v) + cost(v, w)then at that time dist(u, w) > cost(u, v) + cost(v, w)

Along with this shortcut, store the node v

Note: this is exactly one node per shortcutNote: this is exactly one node per shortcut

– In the query algorithm

first compute the SP in the upwards graph byfirst compute the SP in the upwards graph by
backtracing parent pointers as usual (in each Dijkstra,
both from the node on the SP with highest order)g

then, while the paths contains a shortcut u, w replace
it by u, v, w using the v stored above

19

References

 The CH paper again (for your convenience)

Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks

Geisberger, Sanders, Schultes, Delling, WEA 2008

http://algo2.iti.uka.de/schultes/hwy/contract.pdf

20

21

