
Efficient Route Planning
SS 2012

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Lecture 8, Wednesday July 27th, 2012
(Transit Node Routing)

Overview of this lecture

 Organizational
– Feedback and results for Exercise Sheet 7 (CH, part 2)

 Transit Node Routing (TNR)
– Last algorithm (in this course) for routing on road networks

– One of the (algorithmically) fastest one to date

– Very simple idea + very simple query algorithm

– Various possibilities for the pre-computation … we will look at
one based on Contraction Hierarchies

– Historically TNR came two years before CH

– Exercise Sheet 8: Implement a part of TNR

2

Feedback on Ex. Sheet 7 (CH, Part 2)

 Summary / excerpts last checked June 27, 10:38

– The way how and why Contraction Hierarchies works
became much clearer in the last lecture

– Again, not a lot of code

– Easy to make lots of small mistakes

which don't show in the unit tests on small examples

which cause the number of shortcuts to explode in
the end

– Many could not fix all those mistakes ... frustrating

3

Results for Ex. Sheet 7 (CH, Part 2)

 Summary

– Very fast precomputation: ~ 1 minute even on BaWü

– Number of shortcuts ~ 2 million for BaWü

that's about the order of the number of arcs in the
original graph, which is ok

– Query times around 1 millisecond

– All in all, clearly the best algorithm so far

– BUT: also the hardest to implement

not a lot of code, but small mistakes can make
everything fail ... and are hard to find (because they
don't show in simple test cases)

4

Transit Node Routing 1/6

 The underlying very simple observation

– When you go from your home to somewhere far away:

then the initial portion of your route will be one of a
few standard routes

– Let's look at a few examples on Google Maps

– How can we use this to speed up shortest path queries?

5

Transit Node Routing 2/6

 We want to have the following

– For each pair of nodes u and v a "far-away" criterion
Far(u, v) that yields true or false

Intuitively, if Far(u, v) = true then u and v are "far away"

– For each node u sets X(u) and Y(u) of access nodes such that

For all v with Far(u, v) = true  exists x ϵ X(u) on SP(u,v)

For all w with Far(w, u) = true  exists y ϵ Y(u) on SP(w, u)

Intuitively: when you go from u to somewhere "far away",
you will pass through one of the X(u) ... and same for Y(u)
when you go to u from somewhere "far away"

– Note: for symmetric graphs, going from and going to is the same
and X(u) = Y(u)

6

Transit Node Routing 3/6

 Processing a query from s to t — Basic idea:

– If Far(s, t) = false (close together) ... use any algorithm

– If Far(s, t) = true (far away) ... try all combinations of a
node in X(s) and a node in Y(t) as follows:

7

Transit Node Routing 4/6

 Precomputation — Basic idea

– Compute "something" such that Far(u, v) can be evaluated
quickly for given u and v

– Compute and store the X(u) and Y(u) for each node u, as well
as dist(u, x) for each x ϵ X(u) and dist(y, u) for each y ϵ Y(u)

These are Σu (|X(u)| + |Y(u)|) nodes and distances

– Compute and store the unions X = Uu X(u) and Y = Uu Y(u)
and the dist(x, y) for all pairs x and y with x ϵ X and y ϵ Y

These are |X| · |Y| distances

Our goal will be that both |X| and |Y| are on the order of
√n and not n, so that |X| · |Y| = O(n)

8

Transit Node Routing 5/6

 Processing a query from s to t — Details

– If Far(s, t) = false, compute dist(s, t) with another
algorithm, for example ordinary Dijkstra; otherwise:

– Fetch the set X(s) and the dist(s, x) for all x ϵ X(s)

– Fetch the set Y(t) and the dist(y, t) for all y ϵ Y(t)

– Fetch the d(x, y) for all x, y with x ϵ X(s) and y ϵ Y(t)

– Compute the minimum dist(s, x) + dist(x, y) + dist(y, t)
over all x, y with x ϵ X(s) and y ϵ Y(t)

this is the minimum over |X(s)| · |Y(t)| terms

in practice |X(s)| and |Y(t)| can be made as small as
5 on average ... this gives extremely fast query times

9

Transit Node Routing 6/6

 Efficiency

– Goal 1: Far(u, v) should be very cheap to evaluate, and if
Far(u, v) = false then SP(u, v) should be very cheap to compute

Then we can easily determine whether we have to resort
to the fallback algorithm, and if so, it will be very cheap

– Goal 2: X(u) and Y(u) should be ≤ a small C for (almost) all u

Then the X(u) and Y(u) and the distances to / from
them can be stored in ~ C · n space, and queries can be
processed in time C2

– Goal 3: |X = Uu X(u)| and |Y = Uv Y(v)| are O(√n)

then the pairwise distances dist(x, y) with x ϵ X and Y ϵ Y
can be stored in O(n) space

10

Geometric Precomputation 1/3

 The basic idea

11

Geometric Precomputation 2/3

 Refinement, so that X and Y become small

12

Geometric Precomputation 3/3

 Resource requirements

– Small sets of access and transit nodes

– But precomputation time comparable to that for arc flags

(we need a Dijkstra for each boundary node of each cell)

– There are various tricks to make this faster

– And we can also make it hierarchical ... see later slide

– See the references for details

– But let's now look at a precomputation based on CH

13

Precomputation based on CHs 1/4

 Basic idea

– Do the CH precomputation on the given graph

– Let X = Y be the set of nodes with ordering number
above a certain threshold T (we want |X| = |Y| ~ √n)

– For each node u in the graph do a forward search in the
upward graph, and for each settled node v compute the
first node x ϵ X on SP(u, v) if any; let X(u) be the union
of all these x

– Similarly, compute Y(v) for each node v in the graph via
a backward search in the downward graph

14

Precomputation based on CHs 2/4

 Basic idea, details

15

Precomputation based on CHs 3/4

 Beware: we cannot simply stop the search at
transit nodes ... here is an illustration why:

16

Precomputation based on CHs 4/4

 "Far-away" criterion

– Along with the computation of X(u) ... see picture on slide 15

Compute the maximal geometric distance Radius(u) of a
node v where SP(u, v) does not contain a node from X(u)

– Define Far(u, v) = true if and only if the geometric distance
from u to v is > Radius(u)

– We can also do the same for Y(v) and thus possibly further
improve our "far-away" criterion

– For more refined "far-away" criteria, see papers in references

Note: the "far-away" criterion is called locality criterion
there with exactly the opposite meaning ... quite confusing

17

Implementation advice 1/2

 Precomputation

– Just do the CH precomputation and pick as transit nodes
the T nodes contracted last ... it's really that simple

 Access nodes

– For symmetric graph, X(u) = Y(u), that is we only need
to compute one set of access nodes per set

– For each u, you need to find the transit nodes on all
shortest paths starting at u (in the upwards graph)

– For each settled label, just backtrack the parent pointers

– Beware: no need to backtrack further from a node which
you have already seen before in the backtracking ...
complexity should be #arcs in the SP tree

18

Implementation advice 2/2

 Simplification for Ex. Sheet 8

– For a fully functional TNR you would need to precompute
and store all X(u) and all dist(u, x), x ϵ X(u) to them

– Similarly you would need to precompute and store all
dist(t1, t2) for all pairs of transit nodes t1 and t2

– For BaWü you would probably run into memory problems

– Instead do the following at query time, for given s and t

compute X(s) and all dist(s, x), x ϵ X(s)

compute X(t) and all dist(x, t), x ϵ X(t)

compute all dist(x1, x2) where x1 ϵ X(s) and x2 ϵ X(t)

– But ignore the time for these three items when you
benchmark the query time

19

Hierarchical TNR (sketch only) 1/2

 TNR can be made hierarchical, too
– Here is an explanation for two levels of transit nodes

– For each node, precompute and store the distances to
the "closest" level-1 transit nodes (that is, the first level-
1 transit nodes on paths to anywhere else)

– For each level-1 transit node, precompute and store the
distances to the "closest" level-2 transit nodes

– Precompute and store the distances between all pairs of
level-2 transit nodes

– For a query from s to t, now try all combination of (s, x1,
x2, y2, y1, t), where x1 and y1 are the level-1 access
nodes of s and t, respectively, and x2 and y2 are the
level-2 access nodes of the respective x1 and y1

20

Hierarchical TNR (sketch only) 2/2

 Why does this make sense?

– We need the pairwise distances only for the level-2
transit nodes

– Therefore we can have more level-1 transit nodes and
hence a better locality criterion = local searches needed
only when s and t are very close together

– But we have to try out more combinations at query time

– Can be generalized to an arbitrary number of levels

– Experiments suggest 5 levels for the road network of a
whole continent (Western Europe or the US)

– See the references for details

21

References

 Transit Node Routing, original paper
Ultrafast Shortest-Path Queries Via Transit Nodes
Bast, Funke, Matijevic, DIMACS Shortest Path Challenge
http://www.mpi-inf.mpg.de/~bast/papers/transit-dimacs.pdf

 Transit Node Routing, based on HH and CH
PhD thesis from Dominik Schultes (HH), Chapter 6
http://algo2.iti.kit.edu/schultes/hwy/schultes_diss.pdf
Master thesis from Robert Geisberger (CH), Section 4.2
http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf

 Transit Node Routing, article in Science Magazine
Fast Routing in Road Networks with Transit Nodes
http://www.sciencemag.org/content/316/5824/566.short

22

23

